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ABSTRACT

:

This paper develops properties of coherent systems from
a set theoretic veiwpoint with particular emphasis on modules
of coherent systems. The methods used here demonstrate con-
cisely the previously reported properties of modules as well
as some new properties. Specifically, min path sets and min
cut sets of a coherent system are given several characteriza-
tions. The modularity of a subset of components is given a

new characterization which we use as a definition. The sit-
uation under which a set and its complement are simultaneously
modules is characterized. Finally, the established three
modules theorem is given a new proof.
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List of non-standard symbols

denotes the empty set

¥ is the quantifier "for all"

a is the quantifier "there exists"

3 means "such that

:

e means "is an element of"





1. Introduction .

Coherent systems arise in the study of reliability when one

considers a physical system whose operation is classified as either

functioning or failing, and when this operation is determined by the

joint functioning of failing of some finite set of components. A

"coherent system" is one for which the replacement of a failed component

by a functioning one will not cause a functioning system to fail.

The basic references which deal with coherent systems, [6] and

[8], do so from a boolean function viewpoint. This paper investigates

coherent systems and their modules from a set theoretic viewpoint.

Modules were originally described in [4] ; reference [10] discusses

committees of simple games, an equivalent mathematical structure.

The methods and some of the results given here are new to the theory

of coherent systems. These methods and results provide more tools

for the practical use of modules in coherent systems.

We alert the reader to the following notation; A cz B means A

is a ph.opQA subset of B, and; A c B means A is simply a subset

of B.

2. Coherent Systems .

In reliability contexts, coherent systems are viewed as monotone

Boolean functions, that is, binary valued functions of a finite set of

binary valued variables. We will use this viewpoint to introduce

coherent systems.

Let C be a finite nonempty set (the set of components) and let

C C
{0,1} denote all functions on C to {0,1}. For X e {0,1} , we say

that X is a jo^nt p2A{)0HmanCQ, of the components C, with the inter-

pretation that: ¥ c e C,



^0 ii

-f component c functions
x(c)

;

-f component c fails

A system is any function
(J;

on {0,1} to {0,1}, with the inter-

pretation that, for a joint performance X,

"1 if the system functions under the joint performance X

^0 ±i

<|)(X) =

.f the system fails under the joint performance X.

For joint performances X and Y, we say X ;S Y whenever V c e C,

X(c) t^ Y(c). Then (C,(J)) is a cohoAe^nt 6y^t2Jn whenever:

X ^ Y =* (|)(X) :^ (j)(Y). (1)

Some components may have no effect on the system's behavior. We

classify these as inessential components; all components not inessential

will be called essential. Precisely, a component c is i.YiQJii>ZvvtiaZ

to (C,c|)) when, V X, (J)(0 ,X) = (J)(l ,X) , where (i ,X) (e) = X(e)
c c c

if e ?^ c, =1 if e = c.

The definition of coherent systems requires, in addition to (1)

above

,

at least one component is essential to (C,tf)). (2)

Examples of coherent systems are the series system on C, for

which (j)(X) = Min {X(c)
|

c e C}, the parallel system on C, for which

4)(X) = Max {X(c)
I

c e C}, and the k-out-of-n system on any n-element

set C, for which (}) (X) = 1 « \ X(c) ^ k.

ceC

Coherent systems are examined in [4J, [6 J and [8], while [5] gives

an excellent application of coherent systems in formulating a class of

life distributions, those with increasing hazard rate average.



2.1 Paths and Cuts .

The following notions are well defined for any function (^ on

{0,1} to 0,1. For ACC, let l^e{0,l}^ be = 1 on A, =

on C - A. A path [cut) of (C,<^) is any set P(K) c C such that

4)(Ip) = 1 (*(Iq_k) =0)- A min path [mtn cat] is any path (cut) which

is set minimal with respect to being a path (cut). That is, P(K) is

a path (cut) but no proper subset of it is.

We give a characterization of coherent systems in terms of their

min path sets. It is easily proven from the definitions.

Proposition 1 :

If (C,(()) is a coherent system, then the family of all min paths,

P, satisfies:

V P, Q e P, we have P t Q. (3)

U P = the set of essential components of (C,<})). (4)

Conversely, if P is a non-empty family of non-empty subsets of C, a

finite non-empty set, and if P satisfies (3), then there exists a

uniquely determined coherent system (C,4)) which has P as its family

of min paths. It will have UP as its set of essential components.

Indeed, we can define (j)(X) =loaPeP3X:£:I.

An elementary observation about paths and cuts will be useful in

what follows. By virtue of equation (1), knowing all min paths or all

min cuts is equivalent to knowing the function ((> , indeed <^(X) = 1

« a min path P 3 X ^ I or (}> (X) = « 3 min cut K 3 X ^
'"c-K'



The following proposition serves to characterize when two given families

of subsets of C are the min path and min cut sets respectively of

some coherent system.

Proposition 2 .

Let C be a finite nonempty set and let P and K. be nonempty

families of subsets of C. Then P and K are the min path and min

cut sets respectively of some coherent system with component set C

if and only if both P and K satisfy:

V P, Q e P, P cj: Q and V K, H e K, K 4: H (5)

and

V A C C, either HPePgPCA or aKeKgKCC-A,

but not both. (6)

Equivalent to (5) and (6) is

V P, Q e P, P cj: Q (7)

and

K consists of the set minimal elements of {a| A c C, V P e P, PA ?^ 0}. (8)

Proof:

Given the coherent system, it is clear from the definitions that

equations (5) and (6) are satisfied. Conversely, suppose (5) and (6)

Q
are satisfied and define, for X e {0,1} ,

"1 if a P e P 3 X ^ I

<i)(x) =
;

therwise.VO o



Now, (C,<})) is a coherent system. Because of (5), its min path sets

are P. Because of (6), every element of K is a cut set of (C,(j))

and K contains all the min cuts of (C,(})). Because of (5), K contains

only min cuts

.

To show that (7) and (8) are an equivalent characterization, suppose

first that P and K are the min paths and min cuts of (C,^)). Equa-

tion (7) clearly holds. For any subset A of components, if C - A

contains no min path, then by (6), A is a cut set. It follows that

the sets K described in (8) are the min cut sets. Conversely, suppose

that (7) and (8) hold. Then clearly (5) holds. Let A C C. If A

contains no element of P as a subset, then C - A must intersect

every element of P, hence C - A contains an element of K, by (8).

If however, A contained a member of P and C - A a member of /C,

as subsets, then the given member of K would not intersect the given

member of P, which would be a contradiction. Hence (6) holds.

Remark ;

In references [9] and [7], families P and K of subsets of C

which satisfy equations (5) and (6) are called blocking systems. The

equivalence of (7) and (8) to (5) and (6) is also shown, but no identi-

fication of a structure function ^ is useful there. Proposition 2

shows that coherent systems and blocking systems are mathematically,

equivalent

.

2.2 Duality .

The symmetry of equations (5) and (6) make the following definitions

and observations straightforward.



C H
Since I e {0,1} Is identically one on C, then for <^ (X) =

Q
1 - c()(I - X), where X e {0,1} , and (C,(()) is a coherent system,

(C,()) ) is also a coherent system, the dvutt o^ (C,(()). The paths and

cuts of (C,(j)) are the cuts and paths respectively of its dual (C,<}) ).

This notion of duality is a reasonable one since (C,((p ) ) = (C,(()).

These observations imply a dual proposition to Proposition 1, in

which we just replace every occurrence of the word "path" by the word

"cut" and change the last line to read: "Indeed, we can define

<|)(X)=0 « 3PeP3X:!S I„_p."

3. Modules .

Proposition 2 indicates that one can study coherent systems from

a Boolean function viewpoint using the structure function ((> or from

a set-theoretic viewpoint using the min path sets P. The former

approach is taken in reliability theory and in switching theory while

the latter approach is used in combinatorial analysis. This paper uses

the set theoretic view of coherent systems to study an important aspect

of coherent systems in reliability, namely modules. A module is, both

intuitively and mathematically, a subset of components which collectively

tends to either aid or deter the system's operation. That is, the

influence of the components in a module on the system's operations is

either positive or negative, depending on the joint performance of the

module's components, but independent of the joint performance of compo-

nents outside the module.

Modules appear naturally in real systems since such systems are

frequently conceived and designed in modular form. They are the natural



building blocks for making systems out of subsystems, which are them-

selves built from other systems, and so on. A practical interest in

modules is in computing system reliability as pointed out in [4].

In what follows, the properties of modules are studied from a set

theoretic viewpoint. All the properties of modules given in [4] are

proved as well as some properties not previously reported.

3.1 Definitions and Equivalences for Modules .

From now on we will assume that our coherent systems have no

inessential components, equivalently that the union of all min paths

is C. This will avoid needless complications, particularly where

modules are concerned.

Let F be a family of subsets of C, and A c C. The restriction

of F to A, written F| , will denote the nonempty intersections of

A with the elements of F, that is, {FAJF e F, FA ^ 0}

.

Let (C,())) be a coherent system and let A be a nonempty set

of components. Letting P and K be the min path and min cut sets

of (C,(()) respectively, we say that A is a modute. of (C,^) whenever

PL and KI. are the min path and min cut sets respectively of a
'A 'A

coherent system with component set A. (Note that we could say, ...

with component set C and inessential components C - A, however this

leads us away from the above assumption that our coherent systems have

no inessential components .

)

The usual definition (see below) of a module is equivalent to our

definition except for the trivial difference that we accept C as a

module. Notice that singleton subsets, i.e., the components themselves,



are always modules. For series and parallel systems, every nonempty

component set A is a module; for a k-out-of-n system with 1 < k < n,

no subset A except the singletons and C is a module.

The following characterization of modules is useful in the sequel,

Proposition 3 .

Let (C,(()) be a coherent system with min path sets P. Let

A c C be nonempty. A is a module if and only if

VPeP,Qep3PA ?^0 and QA ?i we have that

PA U Q(C-A) e P (9)

Proof ;

A weaker looking version of equation (9) will be useful here and

later.

Lemma: The set A satisfies equation (9) if and only if

VPePjQePaPA ?^0 and QA # we have that

PA U Q(C-A) is a path set (10)

Proof of lemma:

Clearly (9) implies (10). Suppose (10) holds but that (9)

fails. Then 3 specific min paths P and Q intersecting
A with P*A U Q (C-A) Z> R, where R is a min path. Either
RA c P*A or R(C-A) cQ*(C-A), possibly both. Note first

that R intersects A, since if RA = 0, then R (Z Q
which contradicts the minimality of Q*. Now if RA c P*A,

then applying equation (10) to R and P* , RA U P*(C-A) is

a path which is strictly contained in P* , a contradiction.
If not, then R(C-A) c Q (C-A) and applying equation (10) to

Q* and R, Q*A U R(C-A) is a path which is strictly contained

in Q , a contradiction.



f

Returning to the main proof, we will show all modules satisfy (9) by

showing (10) is satisfied. Letting P and Q be min path sets having

a nonempty intersection with A, let R = PA U Q(C-A) and suppose

R is not a path. Then C - R must be a cut set and hence contain a

min cut, say K, i.e., Kg (C-R) . It follows that KA 3 KQ ^0

so KA e /(| , where K are all min cuts of (C,<t)). Since PA ?^

by assumption, PA e ^L' Now, the fact that (KA) (PA) = contra-
in.

diets the modularity of A.

To show that the converse holds, we begin with:

Lemma: If a set A satisfies equation (9), then every
element of P| intersects every element of ^|.» i.e.,

V PA e P] , ¥ KA e /(| ., we have (PA) (KA) ^ ^ As

usual, K denotes the mm path sets of the given coherent
system.

Proof of lemma:

Suppose the lemma is false. Then 3 PA e ^L ^i^^ KA £ K.\

3 (PA) (KA) = 0. Taking E = K(C-A) , it follows, using (5),

that for some min path Q, Q g C - E. The inequality

QA 3 QKA = QK ?^ allows us to apply the hypothesis,

equation (9) , to P and Q, giving PA U Q(C-A) is a min

path. This is a contradiction because K(PAUQ(C-A)) =

(PA) (KA) U Q E = 0.

Returning to the main proof, we show that A is a module when

A satisfies (9), by showing that P\ and K\ ^ satisfy (5) and (6),

relative to the component set A. Suppose 3 PA ^ ^\p^
^^i*^

QA e P| 3 PA c QA. Then PA U Q(C-A) is a min path strictly con-

tained in Q, a contradiction. Now suppose 3 KA ^ '*^l^
^^^

HA e ^ 3 KACHA Letting E = KA U H(C-A) , E can contain no

cut hence 3 min path P 3 P g (C-E) . The inequality PA 3 PHA =

PH ?^ justifies use of the lemma, concluding (PA) (KA) ^ which

contradicts the fact P c (C-E)

.
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Having established equation (5), we show (6) holds. We must

show V E c A, either (a): 3 PA e P| 3 PA c E; or (b) :

a KA e K\^ 3 KA cA - E; but not both (a) and (b) . Clearly (a)

and (b) holding simultaneously would violate the above lemma. Pick any

min path P 3 PA ?f and consider E U P(C-A). Either this set con-

tains a min path Q c (EUP(C-A)) => QE ?^ =» (a) holds, or its comple-

ment in C, (A-E) U ((C-A)-P) 3 K, a min cut, which => K(A-E) ^ =>

(b) holds. This completes the proof.

The usefulness of the characterization of modules given in

Proposition 3 is that it provides a test for modularity which only

involves the min path sets with no mention of the min cuts. The utility

of this will become more apparent in later proofs. We give the usual

definition of modules for completeness here as

Proposition 4 .

Let (C,(l)) be a coherent system with all components essential

and A be a nonempty subset of C. A is a module of (C,(()) «* (j) (X)

= i|;(r(x|^),x|^_^), where:

xl . is X restricted to A
'A

(A,r) is a coherent system

({c } U (C-A) ,ij;) is a coherent system, and

(r(x|^),x|^_^)(c) = X(c) for c e C - A, = r(x|^) for c = c^.

We remark that if A is a module, then r and ij; in Proposition

4 are uniquely determined. We can therefore refer unambiguously to the

coherent system (A,r) as a module of (C,(})) whenever A is a module
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of (C,(J)). In fact, (A,r) has min path sets ?\ and min cut sets

K\ . See [ ] for a proof that this characterization is equivalent to (9)

and hence to our definition.

It is natural to conjecture that if P\ and K| are candidates

for min paths and min cuts on A, then A is a module. That is,

suppose P\ in place of P satisfies (3) and also K.\ in place of

P satisfies (3). Then there exists a coherent system (A,r) with

min path sets P| and a coherent system (A,r ) with min cut sets

K] . The conjecture that A is then a module, i.e., that T = T
,

is false. For example, take C = {1,2,3,4,5}, P = { {1, 3,5} , {2 ,3,4} , {2,5} , {1,4}}

,

K = {{1,3, 5}, {2, 3, 4}, {1,2}, {4, 5}} and A = {1,2,4,5}. Verification

of the example is left to the interested reader.

3.2 Preliminary Properties of Modules .

Intuitively, one expects that a module of a module is again a

module. This is true and is obvious from our definition since if

A 3 B, then (P|a)L = ^L» ^^^ ^^y family F of subsets.

It is easy to see that (A,r) is a module of (C,(})) if and only

if (A,r ) is a module of (C,(j) ). Using this, one can give a dual

result for each of our results in which paths are replaced by cuts.

In particular. Proposition 3 holds when in (9) and (10), paths are

replaced by cuts.

The following properties are regarded as lemmas because of their

use in proving the three modules theorem. We will use equation (9) or

(10) as equivalent to modularity without further mention.



12

Two Modules Lemma :

Let A be a nonempty proper subset of C and (C,4)) be a

coherent system all of whose components are essential, with min path

sets P and min cut sets K. Then A and C - A are both modules

if and only if

either (a) V P £ P, P c A or P c C - A

or (b) ¥ K e K, K c A or K c C - A

Proof:

Suppose A and C - A are modules and suppose (a) fails . Then

aP e P 3 ? k ^ <p and P*(C-A) ^ 0. First we show that V P e P,

?k ^ and P(C-A) ^ 0. Suppose not. If PcA=>PAU P(C-A) = P A

is a path, a contradiction since P A c P . Analogous reasoning applies

if P c C - A hence every min path intersects both A and C - A.

Now, if in addition (b) were to fail, then aK e K. 3 K k ^ and

K (C-A) ?^ 0. By modularity of A, V P e P, we have P(K A) 4 0.

* *
However since K A c K , this contradicts the supposed minimality of

:11c

K . The converse follows easily.

If (a) holds, we say A and C-A are in parallel, while if

(b) holds, we say A and C-A are in series. The parallel and series

designation is not arbitrary; indeed if (A,r') and (C-A,r'') are

modules of (C,(j)), then

(^(x) = Max {r'(x|^),r"(x|j^_^)}

or
= Min {r'(x|^),r"(x|,._^)}

according as (a) or (b) holds respectively.
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Intersection Lemma :

Let A and B be modules of (C,<j)), a coherent system. Then

AB = or AB Is a module of (C,<p).

Proof :

Suppose AB ^ 0. If P and Q are min paths which intersect

AB, then PA U Q(C-A) is a min path which intersects B, so

(PA U Q(C-A))B U Q(C-B) = PAB U Q(C-AB) is a min path, showing AB

is a module.

Difference Lemma :

Let A and B be modules of (C,^), a coherent system with all

components essential. If A - B and B - A are both nonempty, then

both are modules.

Proof:

Let P denote the min path sets and K denote the min cut sets.

We simply show A - B must be a module. By the two modules lemma, it

is sufficient to show that

either (a) ¥ PA e P|^, PA c A - B or PA c AB

or (b) V KA e K| , KACA-Bor KAgAB

'*A e P| 3 P (A-B) ^0 and ? iIf (a) fails, then 3 P*A e P|^ 3 P (A-B) ^0 and P AB ^ 0. By

hypothesis, 3 Q e P 3 Q (B-A) ^ 0. It must be that Q AB ^ or

else, using modularity of B, it would follow that P is not minimal
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Similarly, minimality of Q implies V PA e P| P(A-B) ^ and

PAB 5^ 0. Now suppose (b) fails so aKAe/CLsK (A-B) ^ and

*
/

*
K AB f 0. It follows, by modularity of AB , that K AB intersects

every element of "L' hence K AB is a cut set of module A. This

contradicts the minimality of K A and the proof is complete.

3.3 Three Modules Theorem .

A result of significant importance to the understanding of modules

is the three modules theorem. It was proved in [1] in the more general

setting of switching functions. A much simplified proof appears in [4]

for coherent systems, using a Boolean function approach. Our proof,

also much simplified, shows this paper's methods to be as fundamental

as the Boolean function approach.

The following theorem and the two modules lemma completely

specify how two modules can coexist in a coherent system.

Three Modules Theorem :

Let (C,(|)) be any coherent system with all components essential.

If A and B are modules such that A-B, AB and B - A are

nonempty, then

(i) A-B, AB and B - A are modules.

(ii) A A B and A U B are modules,

(iii) The three modules A-B, AB and B - A appear in either

parallel or series.
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Proof :

Let P denote the min path sets and K. denote the min cut sets

of (C,<p). The intersection and difference lemmas prove (i) . Let E

denote A U B. As for (ii) , repeated application of the two modules

lemma and the fact that every min path must intersect every min cut

in a coherent system imply that .

either (a) V PE e PL , PE c A-B or PE c AB or PE C B-A
L — —

or (b) V KE e K|g, KE c A-B or KE C AB or KE c B-A.

Without loss of generality, we will assume (b) holds. Again from the

two modules lemma, it follows that if (b) holds then

(c) ¥ PE e P| , P(A-B) ^ and PAB ^ and P(B-A) ^ 0.
Ill

Now the modularity of E can be verified easily. Let P e P and

Q e P both intersect E. They both intersect B so PB U Q(C-B) e P.

But this min path and P both intersect A so PA U P(B-A) U Q(C-E) =

PE U Q(C-E) e P, showing E = A U B is a module.

The modularity of A U B, the fact either (a) or (b) holds and

the two modules lemma establish that the symmetric difference A A B

= (A-B) U (B-A) is a module.

As for (iii) , if (a) holds then A-B and B are in parallel

as are B and B-A hence all three appear in parallel. A similar

argument applies if (b) holds, showing the three modules to be in series.

This completes the proof.
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3.4 An Application .

An excellent application of the three modules theorem concerns

"maximal" modules. We give the results here and refer the interested

reader to [4] for the proof.

We will say a module M ?^ C of (C,<i>) is maXAjnat if it is set

maximal with respect to being a module other than C.

Let M be the set of maximal modules of (C,())), a coherent system

with all components essential. Then

either (1) M is a partition of C

or (2) M = {C - M
I

M e M} is a set of modules which

partition C and which appear in either series

or parallel.

This application is discussed in [3] while in [2] the author gives an

algorithm for finding the maximal modules.
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